Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization : Solar Energy Generation and Energy Storage

Identifieur interne : 000104 ( Chine/Analysis ); précédent : 000103; suivant : 000105

Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization : Solar Energy Generation and Energy Storage

Auteurs : RBID : Pascal:13-0270097

Descripteurs français

English descriptors

Abstract

Quaternary semiconductor Cu2ZnSnSe4 (CZTSe) is a very promising alternative to semiconductors based on indium (In) and gallium (Ga) as solar absorber material due to its direct band gap, inherent high absorption coefficient (>104 cm-1) and abundance of cheap elements zinc (Zn) and tin (Sn). In this study, high quality CZTSe thin films were successfully synthesized by a green and low-cost solution based non-vacuum method, which involves spin coating non-toxic solvent-based CZTSe nano-inks onto Mo coated soda lime glass substrates followed by selenization with elemental Se vapor. The effect of selenization temperature on structural, morphological, compositional and optical properties of CZTSe films are investigated using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and photoluminescence spectroscopy. XRD and Raman analysis indicates that a tetragonal stannite-type structured CZTSe is formed. Depend on the selenization temperature, the dense and compact films with grain sizes from 200 nm (500 °C) up to about 1 μm (580 °C) are obtained. EDS measurement indicates that the composition ratios of the prepared CZTSe films are copper-poor and zinc-rich nature. The CZTSe films are p-type conductivity confirmed by a hot point probe method. Photoluminescence spectrum shows slightly asymmetric narrow bands with a maximum of intensity at 0.92 eV. The dependence of the photoluminescence on the excitation temperature reveals a decrease in the intensity of the photoluminescence bands. An absorption coefficient exceeding 104 cm-1 and the band gap energy about 0.87 eV of the studied films are determined by an absorption spectroscopy.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0270097

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and optical properties of the Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
thin films grown by nano-ink coating and selenization : Solar Energy Generation and Energy Storage</title>
<author>
<name>YING LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, No. 350 Shushan Road</s1>
<s2>Hefei, Anhui Province 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui Province 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, University of Science and Technology of China, No. 96, Jin Zhai Road Baohe District</s1>
<s2>Hefei, Anhui Province 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui Province 230026</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, De Yi" uniqKey="Kong D">De-Yi Kong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, No. 350 Shushan Road</s1>
<s2>Hefei, Anhui Province 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui Province 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HUI YOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, No. 350 Shushan Road</s1>
<s2>Hefei, Anhui Province 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui Province 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chi Lai" uniqKey="Chen C">Chi-Lai Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, No. 350 Shushan Road</s1>
<s2>Hefei, Anhui Province 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui Province 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Xin Hua" uniqKey="Lin X">Xin-Hua Lin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, No. 350 Shushan Road</s1>
<s2>Hefei, Anhui Province 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei, Anhui Province 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brugger, J Rgen" uniqKey="Brugger J">J Rgen Brugger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMT-LMIS1, Station 17</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0270097</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0270097 INIST</idno>
<idno type="RBID">Pascal:13-0270097</idno>
<idno type="wicri:Area/Main/Corpus">000928</idno>
<idno type="wicri:Area/Main/Repository">000477</idno>
<idno type="wicri:Area/Chine/Extraction">000104</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4522</idno>
<title level="j" type="abbreviated">J. mater. sci., Mater. electron.</title>
<title level="j" type="main">Journal of materials science. Materials in electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Absorption coefficient</term>
<term>Coated material</term>
<term>Compact design</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Cost analysis</term>
<term>Cost lowering</term>
<term>Dispersive spectrometry</term>
<term>Doped materials</term>
<term>Economic aspect</term>
<term>Energy dispersion</term>
<term>Energy gap</term>
<term>Gallium</term>
<term>Grain size</term>
<term>Indium</term>
<term>Molybdenum</term>
<term>Non-vacuum technology</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Protective coatings</term>
<term>Raman spectrometry</term>
<term>Raman spectrum</term>
<term>Scanning electron microscopy</term>
<term>Selenium addition</term>
<term>Semiconductor materials</term>
<term>Soda-lime glasses</term>
<term>Solar absorbers</term>
<term>Spin-on coating</term>
<term>Spin-on coatings</term>
<term>Thin film</term>
<term>Tin selenides</term>
<term>X ray diffraction</term>
<term>Zinc</term>
<term>Zinc selenides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Revêtement protecteur</term>
<term>Addition sélénium</term>
<term>Absorbeur solaire</term>
<term>Bande interdite</term>
<term>Coefficient absorption</term>
<term>Diminution coût</term>
<term>Analyse coût</term>
<term>Aspect économique</term>
<term>Revêtement centrifugation</term>
<term>Dépôt centrifugation</term>
<term>Diffraction RX</term>
<term>Spectrométrie Raman</term>
<term>Spectre Raman</term>
<term>Microscopie électronique balayage</term>
<term>Spectrométrie dispersive</term>
<term>Dispersion énergie</term>
<term>Photoluminescence</term>
<term>Conception compacte</term>
<term>Grosseur grain</term>
<term>Séléniure d'etain</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de zinc</term>
<term>Couche mince</term>
<term>Semiconducteur</term>
<term>Indium</term>
<term>Gallium</term>
<term>Matériau absorbant</term>
<term>Zinc</term>
<term>Molybdène</term>
<term>Matériau revêtu</term>
<term>Verre sodocalcique</term>
<term>Cuivre</term>
<term>Matériau dopé</term>
<term>7867</term>
<term>7830N</term>
<term>0779</term>
<term>7840R</term>
<term>Cu2ZnSnSe4</term>
<term>Technologie hors vide</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
<term>Molybdène</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quaternary semiconductor Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
(CZTSe) is a very promising alternative to semiconductors based on indium (In) and gallium (Ga) as solar absorber material due to its direct band gap, inherent high absorption coefficient (>10
<sup>4</sup>
cm
<sup>-1</sup>
) and abundance of cheap elements zinc (Zn) and tin (Sn). In this study, high quality CZTSe thin films were successfully synthesized by a green and low-cost solution based non-vacuum method, which involves spin coating non-toxic solvent-based CZTSe nano-inks onto Mo coated soda lime glass substrates followed by selenization with elemental Se vapor. The effect of selenization temperature on structural, morphological, compositional and optical properties of CZTSe films are investigated using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and photoluminescence spectroscopy. XRD and Raman analysis indicates that a tetragonal stannite-type structured CZTSe is formed. Depend on the selenization temperature, the dense and compact films with grain sizes from 200 nm (500 °C) up to about 1 μm (580 °C) are obtained. EDS measurement indicates that the composition ratios of the prepared CZTSe films are copper-poor and zinc-rich nature. The CZTSe films are p-type conductivity confirmed by a hot point probe method. Photoluminescence spectrum shows slightly asymmetric narrow bands with a maximum of intensity at 0.92 eV. The dependence of the photoluminescence on the excitation temperature reveals a decrease in the intensity of the photoluminescence bands. An absorption coefficient exceeding 10
<sup>4</sup>
cm
<sup>-1</sup>
and the band gap energy about 0.87 eV of the studied films are determined by an absorption spectroscopy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4522</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. electron.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and optical properties of the Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
thin films grown by nano-ink coating and selenization : Solar Energy Generation and Energy Storage</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YING LIU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KONG (De-Yi)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUI YOU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHEN (Chi-Lai)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIN (Xin-Hua)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BRUGGER (Jürgen)</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences, No. 350 Shushan Road</s1>
<s2>Hefei, Anhui Province 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, University of Science and Technology of China, No. 96, Jin Zhai Road Baohe District</s1>
<s2>Hefei, Anhui Province 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMT-LMIS1, Station 17</s1>
<s2>1015 Lausanne</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>529-535</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22352</s2>
<s5>354000503651630160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0270097</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Quaternary semiconductor Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
(CZTSe) is a very promising alternative to semiconductors based on indium (In) and gallium (Ga) as solar absorber material due to its direct band gap, inherent high absorption coefficient (>10
<sup>4</sup>
cm
<sup>-1</sup>
) and abundance of cheap elements zinc (Zn) and tin (Sn). In this study, high quality CZTSe thin films were successfully synthesized by a green and low-cost solution based non-vacuum method, which involves spin coating non-toxic solvent-based CZTSe nano-inks onto Mo coated soda lime glass substrates followed by selenization with elemental Se vapor. The effect of selenization temperature on structural, morphological, compositional and optical properties of CZTSe films are investigated using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and photoluminescence spectroscopy. XRD and Raman analysis indicates that a tetragonal stannite-type structured CZTSe is formed. Depend on the selenization temperature, the dense and compact films with grain sizes from 200 nm (500 °C) up to about 1 μm (580 °C) are obtained. EDS measurement indicates that the composition ratios of the prepared CZTSe films are copper-poor and zinc-rich nature. The CZTSe films are p-type conductivity confirmed by a hot point probe method. Photoluminescence spectrum shows slightly asymmetric narrow bands with a maximum of intensity at 0.92 eV. The dependence of the photoluminescence on the excitation temperature reveals a decrease in the intensity of the photoluminescence bands. An absorption coefficient exceeding 10
<sup>4</sup>
cm
<sup>-1</sup>
and the band gap energy about 0.87 eV of the studied films are determined by an absorption spectroscopy.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02C1</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03A</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Protective coatings</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Revestimiento protector</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition sélénium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Selenium addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición selenio</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Absorbeur solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Solar absorbers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Coefficient absorption</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Absorption coefficient</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Coeficiente absorción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Diminution coût</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cost lowering</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Reducción costes</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Analyse coût</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Cost analysis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Análisis costo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Aspect économique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Economic aspect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Aspecto económico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Revêtement centrifugation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spin-on coatings</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépôt centrifugation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Spin-on coating</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Raman spectrometry</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espectrometría Raman</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Spectre Raman</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Raman spectrum</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Espectro Raman</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Dispersion énergie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Energy dispersion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Dispersión energía</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Conception compacte</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Compact design</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Concepción compacta</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Grosseur grain</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Grain size</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Grosor grano</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure d'etain</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Tin selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Séléniure de zinc</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Zinc selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>32</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Verre sodocalcique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Soda-lime glasses</s0>
<s5>33</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="34" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="34" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="35" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>7830N</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>0779</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>7840R</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>Cu2ZnSnSe4</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="41" i2="X" l="FRE">
<s0>Technologie hors vide</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="41" i2="X" l="ENG">
<s0>Non-vacuum technology</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>259</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000104 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000104 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0270097
   |texte=   Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization : Solar Energy Generation and Energy Storage
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024